ÌâÄ¿ÄÚÈÝ

 

£¨Àí£©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒ=1£¬

.

£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»

£¨II£©ÒÑÖª¶¨Àí£º¡°Èôº¯Êýf(x)ÔÚÇø¼äDÉÏÊÇ°¼º¯Êý£¬x>y(x,y¡ÊD)£¬ÇÒf¡¯(x)´æÔÚ£¬ÔòÓÐ

< f¡¯(x)¡±£®ÈôÇÒº¯Êýy=xn+1ÔÚ(0,+¡Þ)ÉÏÊÇ°¼º¯Êý£¬ÊÔÅжÏbnÓëbn+1µÄ´óС£»

£¨III£©ÇóÖ¤£º¡Übn<2.

(ÎÄ)Èçͼ£¬|AB|=2£¬OΪABÖе㣬ֱÏß¹ýBÇÒ´¹Ö±ÓÚAB£¬¹ýAµÄ¶¯Ö±ÏßÓë½»ÓÚµãC£¬µãMÔÚÏ߶ÎACÉÏ£¬Âú×ã=.

£¨I£©ÇóµãMµÄ¹ì¼£·½³Ì£»

£¨II£©Èô¹ýBµãÇÒбÂÊΪ- µÄÖ±ÏßÓë¹ì¼£M½»ÓÚ

         µãP£¬µãQ(t,0)ÊÇxÖáÉÏÈÎÒâÒ»µã£¬Ç󵱦¤BPQΪ

         Èñ½ÇÈý½ÇÐÎʱtµÄÈ¡Öµ·¶Î§£®

 

 

 

 

¡¾´ð°¸¡¿

 £¨Àí£©(1)Sn=an£¬¡àSn+1=an+1£¬an+1=Sn+1-Sn=an+1-an£¬¡à= (n¡Ý2)         (2¡¯)

¡à==¡­==1£¬¡àan+1=n£¬an=n-1 (n¡Ý2)£¬ÓÖa1=0£¬¡àan=n-1                  (4¡¯)

   £¨2£©bn+1=(1+ )n+1£¬bn=(1+ )n£¬

¡ß<(n+1)¡¤(1+ )n                                   (7¡¯)

ÕûÀí¼´µÃ£º(1+ )n<(1+ )n+1£¬¼´bn<bn+1                              (8¡¯)

(3)ÓÉ(2)Öªbn>bn-1­>¡­>b­1=                                               (10¡¯)

ÓÖCnr¡¤()r=(¡¤¡¤¡­)¡¤()r¡Ü()r£¬(0¡Ür¡Ün)£¬

¡àbn¡Ü1+ +()2+¡­+()n=2-()n<2£¬¡à¡Übn<2                          (14¡¯)

¿¼µã½âÎö£ºÕâÖÖ¡°Ð¸ÅÄÌâÐèÒª½ÏºÃµÄÀí½â¡¢·ÖÎöÄÜÁ¦£¬·ÅËõ·¨Ö¤Ã÷²»µÈʽÊDz»µÈʽ֤Ã÷µÄ³£Ó÷½·¨£¬Ò²¾ßÓÐÒ»¶¨µÄÁé»îÐÔ£¬Æ½Ê±Òª×¢ÖظÅÄîµÄѧϰ£¬³£¼ûÌâÐ͵ĻýÀÛ£¬Ìá¸ß˼άÄÜÁ¦ºÍÁªÏë±äͨÄÜÁ¦£®

£¨ÎÄ£©£¨1£©ÉèA£¨a,0£©,B(0,b),P(x,y),Óɵ᪡ª2¡¯

ÓɵõãP¹ì¼£·½³ÌΪ¡ª¡ª2¡¯

µ±Ê±£¬CµÄ·½³ÌΪ¡ª¡ª1¡¯

ÉèÖ±Ïß·½³ÌΪÓëC·½³ÌÁªÁ¢µÃ-1=0

Ò×µÃ

¡ª¡ª2¡¯

µãQµ½Ö±ÏߵľàÀëΪ¡ª¡ª2¡¯

µÃ£¬µ±ÇÒ½öµ±-2ʱ¡ª¡ª1¡¯

SÓÐ×î´óÖµ¡ª¡ª2¡¯

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø