ÌâÄ¿ÄÚÈÝ
£¨Àí£©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒ=1£¬
.
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©ÒÑÖª¶¨Àí£º¡°Èôº¯Êýf(x)ÔÚÇø¼äDÉÏÊÇ°¼º¯Êý£¬x>y(x,y¡ÊD)£¬ÇÒf¡¯(x)´æÔÚ£¬ÔòÓÐ
< f¡¯(x)¡±£®ÈôÇÒº¯Êýy=xn+1ÔÚ(0,+¡Þ)ÉÏÊÇ°¼º¯Êý£¬ÊÔÅжÏbnÓëbn+1µÄ´óС£»
£¨III£©ÇóÖ¤£º¡Übn<2.
(ÎÄ)Èçͼ£¬|AB|=2£¬OΪABÖе㣬ֱÏß¹ýBÇÒ´¹Ö±ÓÚAB£¬¹ýAµÄ¶¯Ö±ÏßÓë½»ÓÚµãC£¬µãMÔÚÏ߶ÎACÉÏ£¬Âú×ã=.
£¨I£©ÇóµãMµÄ¹ì¼£·½³Ì£»
£¨II£©Èô¹ýBµãÇÒбÂÊΪ- µÄÖ±ÏßÓë¹ì¼£M½»ÓÚ
µãP£¬µãQ(t,0)ÊÇxÖáÉÏÈÎÒâÒ»µã£¬Ç󵱦¤BPQΪ
Èñ½ÇÈý½ÇÐÎʱtµÄÈ¡Öµ·¶Î§£®
£¨Àí£©(1)Sn=an£¬¡àSn+1=an+1£¬an+1=Sn+1-Sn=an+1-an£¬¡à= (n¡Ý2) (2¡¯)
¡à==¡==1£¬¡àan+1=n£¬an=n-1 (n¡Ý2)£¬ÓÖa1=0£¬¡àan=n-1 (4¡¯)
£¨2£©bn+1=(1+ )n+1£¬bn=(1+ )n£¬
¡ß<(n+1)¡¤(1+ )n (7¡¯)
ÕûÀí¼´µÃ£º(1+ )n<(1+ )n+1£¬¼´bn<bn+1 (8¡¯)
(3)ÓÉ(2)Öªbn>bn-1>¡>b1= (10¡¯)
ÓÖCnr¡¤()r=(¡¤¡¤¡)¡¤()r¡Ü()r£¬(0¡Ür¡Ün)£¬
¡àbn¡Ü1+ +()2+¡+()n=2-()n<2£¬¡à¡Übn<2 (14¡¯)
¿¼µã½âÎö£ºÕâÖÖ¡°Ð¸ÅÄÌâÐèÒª½ÏºÃµÄÀí½â¡¢·ÖÎöÄÜÁ¦£¬·ÅËõ·¨Ö¤Ã÷²»µÈʽÊDz»µÈʽ֤Ã÷µÄ³£Ó÷½·¨£¬Ò²¾ßÓÐÒ»¶¨µÄÁé»îÐÔ£¬Æ½Ê±Òª×¢ÖظÅÄîµÄѧϰ£¬³£¼ûÌâÐ͵ĻýÀÛ£¬Ìá¸ß˼άÄÜÁ¦ºÍÁªÏë±äͨÄÜÁ¦£®
£¨ÎÄ£©£¨1£©ÉèA£¨a,0£©,B(0,b),P(x,y),Óɵ᪡ª2¡¯
ÓɵõãP¹ì¼£·½³ÌΪ¡ª¡ª2¡¯
µ±Ê±£¬CµÄ·½³ÌΪ¡ª¡ª1¡¯
ÉèÖ±Ïß·½³ÌΪÓëC·½³ÌÁªÁ¢µÃ-1=0
Ò×µÃ
¡ª¡ª2¡¯
µãQµ½Ö±ÏߵľàÀëΪ¡ª¡ª2¡¯
µÃ£¬µ±ÇÒ½öµ±-2ʱ¡ª¡ª1¡¯
SÓÐ×î´óÖµ¡ª¡ª2¡¯