题目内容

(理)已知数列{an}是等差数列,且a1=-2,a1+a2+a3=-12.
(1)求数列{an}的通项公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求数列{an(bn+1)}的前n项和Tn的公式.
分析:(1)由等差数列的性质结合已知可得a2,进而可得公差,可得通项公式;(2)由题意可得bn+1=7n-1,可得an(bn+1)=-2n×7n-1,由错位相减法求和可得.
解答:解:(1)由等差数列的性质可得a1+a2+a3=3a2=-12,
故可得a2=-4,故公差d=-4-(-2)=-2,
故数列{an}的通项公式为:an=-2-2(n-1)=-2n;
(2)由题意可得bn+1+1=7bn+7=7(bn+1),即
bn+1+1
bn+1
=7,
故数列{bn+1}是以b1+1=1为首项,7为公比的等比数列,
故bn+1=1×7n-1=7n-1,故an(bn+1)=-2n×7n-1
所以Tn=-2(1×70+2×71+3×72+…+n×7n-1),①
同乘以7可得:7Tn=-2(1×71+2×72+3×73+…+n×7n),②
①-②可得-6Tn=-2(1+71+72+…+7n-1-n×7n),
故可得Tn=
1
3
1-7n
1-7
-n×7n)=-
7n(6n-1)+1
18
点评:本题考查等差数列的通项公式和错位相减法求和,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网