题目内容

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=
1
4
1
4
分析:计算f(n+1)-f(n) 为
1
2n+1
+
1
2n+2
-
1
n+1
,代入要求的式子化简为
lim
n→+∞
1
4+
6
n
+
2
n2
),再利用数列极限的运算法则求得结果.
解答:解:由题意可得,f(n+1)-f(n)=(
1
n+2
+
1
n+3
+
1
n+4
+…+
1
2n+2
)-(
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
)=
1
2n+1
+
1
2n+2
-
1
n+1

lim
n→+∞
n2[f(n+1)-f(n)]
=
lim
n→+∞
 n2
1
2n+1
+
1
2n+2
-
1
n+1
)=
lim
n→+∞
 (n2
1
(2n+1)(2n+2)
 )=
lim
n→+∞
n2
4n2+6n+2
)=
lim
n→+∞
 (
1
4+
6
n
+
2
n2
)=
1
4+0+0
=
1
4

故答案为
1
4
点评:本题主要考查数列极限的运算法则的应用,式子的变形是解题的关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网