题目内容
设f(n)=
+
+
+…+
,则
n2[f(n+1)-f(n)]=
.
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
lim |
n→+∞ |
1 |
4 |
1 |
4 |
分析:计算f(n+1)-f(n) 为
+
-
,代入要求的式子化简为
(
),再利用数列极限的运算法则求得结果.
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
lim |
n→+∞ |
1 | ||||
4+
|
解答:解:由题意可得,f(n+1)-f(n)=(
+
+
+…+
)-(
+
+
+…+
)=
+
-
,
则
n2[f(n+1)-f(n)]=
n2(
+
-
)=
(n2•
)=
(
)=
(
)=
=
,
故答案为
.
1 |
n+2 |
1 |
n+3 |
1 |
n+4 |
1 |
2n+2 |
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
则
lim |
n→+∞ |
lim |
n→+∞ |
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
lim |
n→+∞ |
1 |
(2n+1)(2n+2) |
lim |
n→+∞ |
n2 |
4n2+6n+2 |
lim |
n→+∞ |
1 | ||||
4+
|
1 |
4+0+0 |
1 |
4 |
故答案为
1 |
4 |
点评:本题主要考查数列极限的运算法则的应用,式子的变形是解题的关键,属于基础题.
练习册系列答案
相关题目
设a>1,定义f(n)=
+
+…+
,如果对任意的n∈N*且n≥2,不等式12f(n)+7logab>7loga+1b+7(a>0且a≠1)恒成立,则实数b的取值范围是( )
1 |
n+1 |
1 |
n+2 |
1 |
2n |
A、(2,
| ||
B、(0,1) | ||
C、(0,4) | ||
D、(1,+∞) |