题目内容

9.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值,并分别写出相应的x的值.

分析 (1)利用和角公式及降次公式对f(x)进行化简,得到f(x)=Asin(ωx+φ)形式,代入周期公式即可;
(2)由x的范围求出ωx+φ的范围,结合正弦函数单调性得出最值和相应的x.

解答 解:(1)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=cosx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{2}$($\frac{1+cos2x}{2}$)+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x-1
=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)-1,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],∴2x-$\frac{π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],
∴当2x-$\frac{π}{3}$=$\frac{π}{6}$,即x=$\frac{π}{4}$时,fmax(x)=$\frac{1}{2}×\frac{1}{2}-1$=-$\frac{3}{4}$;
当2x-$\frac{π}{3}$=-$\frac{π}{2}$,即x=-$\frac{π}{12}$时,fmin(x)=$\frac{1}{2}×(-1)-1$=-$\frac{3}{2}$.

点评 本题考查了三角函数的恒等变换及性质,对二次项进行降次及和差公式运用是常用方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网