题目内容

已知实数a1,a2,a3不全为零,
(i)则
a1a2+2a2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值为
 

(ii)设正数x,y满足x+y=2,令
xa1a2+ya2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值为M,则M的最小值为
 
分析:观察分式的分子和分母的代数式的不同,进行拆分a22项,构造均值不等式求最值.
解答:解:由题意知:
(1)
a1a2+2a2a3
a
2
1
+
a
2
2
+
a
2
3
=
a1a2+2a2a3
 
a
2
1
+
1
5
a
2
2
 +
4
5
a
2
2
+
a
2
3

a1a2+2a2a3
2
a
2
1
a
2
2
5
+2
4
a
2
2
a
2
3
5
 
=
a1a2+2a2a3
2
5
 ( a1a2 +2a2a3)

=
5
2

(2)
xa1a2+ya2a3
a
2
1
+
a
2
2
+
a
2
3
=
xa1a2+ya2a3
a
2
1
+
x2
x2+y2
a
2
2
+
y2
x2+y2
a
2
2
+
a
2
3

xa1a2+ya2a3
2
xa1a2
x2+y2
 +2
ya2a3
x2+y2
=
x2+y2
2

∴M=
x2+y2
2

即M≥
2
2
(
x+y
2
)
=
2
2

∴M的最小值为 
2
2
. 
故(1)
5
2
  (2)
2
2
点评:本题对均值不等式的灵活熟练运用的程度要求比较高,属中档偏上题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网