题目内容

高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.
(2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).
(3)设表示该班两个学生的百米测试成绩,已知,求事件的概率.

(1)28人;(2)众数为15.5,中位数15.74;(3).

解析试题分析:(1)解决频率分布直方图的问题,关键在于找出图中数据之间的关系,这些数据中,比较明显的有组距、,间接的有频率,小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形的面积等于频率,小长方形的面积之和等于1,因此频率之和为1;(2)最高矩形的底边的中点的横坐标即是众数,中位数左边和右边的小长方形的面积和相等的;(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举.
试题解析:解(1)根据直方图可知成绩在内的人数:人   
由图可知众数落在第三组
因为数据落在第一、二组的频率
数据落在第一、二、三组的频率
所以中位数一定落在第三组中.
假设中位数是,所以
解得中位数
成绩在的人数有:人,设为
成绩在的人数有:人,设为
时有一种情况,时有三种情况
分布在时有六种情况,基本事件的总数为10
事件由6个基本事件组成.
所以.
考点:(1)频率分布直方图的认识;(2)求随机事件的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网