题目内容
设椭圆的左、右顶点分别为、,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.
(1);(2) ;(3)或.
解析试题分析:(1)要求椭圆的方程,就要知道a,b,由点A知道a=,由离心率可求得c,由a2=b2+c2进而求出b=1;(2)求动点的轨迹方程,首先设,,利用用C点表示P点坐标,,代入椭圆方程,从而得到动点C的轨迹;(3)直线MN被椭圆截得的弦长,直线MN斜率分两种情况,斜率存在和斜率不存在,斜率不存在是,直线MN方程为x="1," ,舍掉,斜率存在式,设直线MN的方程为,联立直线和椭圆方程,利用根与系数关系和可以求出k.
试题解析:(1)由题意可得,,,
∴,
∴,
∴椭圆的方程为.
(2)设,,由题意得,即,
又,代入得,即,
即动点的轨迹的方程为.
(3) 若直线MN的斜率不存在,则方程为,所以,
∴直线MN的斜率存在,设为k,直线MN的方程为,
由,得,
∵,
∴,
设M ,则
∴,
即,
解得.
故直线MN的方程为或.
考点:1.椭圆;2.动点轨迹;3.求直线方程.
练习册系列答案
相关题目