题目内容

设函数f(x)定义如下表,数列{xn}满足x=5,且对任意自然数均有xn+1=f(xn),则x2012的值为( )
x12345
f(x)41352

A.2
B.3
C.4
D.5
【答案】分析:利用函数f(x)定义,计算可得数列{xn}是:5,2,1,4,5,2,1,…是一个周期性变化的数列,周期为:4,从而得出答案.
解答:解:由题意,∵x=5,且对任意自然数均有xn+1=f(xn),
∴x1=f(x)=2,x2=f(x1)=1,x3=f(x2)=4,x4=f(x3)=5,
故数列{xn}满足:5,2,1,4,5,2,1,…是一个周期性变化的数列,周期为:4.
∴x2012=x4×503=x=5.
故选D.
点评:本小题主要考查函数的表示法、函数的周期性的应用、考查数列的周期性,考查运算求解能力与转化思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网