题目内容
(2011•安徽模拟)设数列{an}是等差数列,{bn}是各项均为正数的等比数列,且a1=b1,a3+b5=21,a5+b3=13,
(1)求数列{an},{bn}的通项公式;
(2)若数列{
}的前n项和为Sn,试比较Sn与4的大小关系.
(1)求数列{an},{bn}的通项公式;
(2)若数列{
an | bn |
分析:(1)设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式.
(2)数列{
}的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和Sn.利用作差法比较Sn与4的大小关系.
(2)数列{
an |
bn |
解答:解:(1)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且
解得d=2,q=2.
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(2)
=
.
Sn=1+
+
++
+
,①
∴2Sn=2+3+
++
+
,②
②-①得Sn=2+2+
+
++
-
=2+2×(1+
+
++
)-
=2+2×
-
=6-
.
Sn-4=2-
,
由Sn-4<0得出2n<2n+3,解得n=1,2,3,
由Sn-4>0得出2n>2n+3,解得n=4,5,6,….
所以当n≤3时Sn<4,当n≥4时Sn>4.
|
解得d=2,q=2.
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(2)
an |
bn |
2n-1 |
2n-1 |
Sn=1+
3 |
21 |
5 |
22 |
2n-3 |
2n-2 |
2n-1 |
2n-1 |
∴2Sn=2+3+
5 |
2 |
2n-3 |
2n-3 |
2n-1 |
2n-2 |
②-①得Sn=2+2+
2 |
2 |
2 |
22 |
2 |
2n-2 |
2n-1 |
2n-1 |
=2+2×(1+
1 |
2 |
1 |
22 |
1 |
2n-2 |
2n-1 |
2n-1 |
=2+2×
1-
| ||
1-
|
2n-1 |
2n-1 |
=6-
2n+3 |
2n-1 |
Sn-4=2-
2n+3 |
2n-1 |
由Sn-4<0得出2n<2n+3,解得n=1,2,3,
由Sn-4>0得出2n>2n+3,解得n=4,5,6,….
所以当n≤3时Sn<4,当n≥4时Sn>4.
点评:本题主要考查数列的通项公式、错位相消法求和.不等关系的比较.考查计算能力.
练习册系列答案
相关题目