题目内容
已知n是正偶数,用数学归纳法证明时,若已假设n=k(且为偶数)时命题为真,,则还需证明( )
A.n=k+1时命题成立 B. n=k+2时命题成立
C. n=2k+2时命题成立 D. n=2(k+2)时命题成立
B
解析:
因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选B
【名师指引】用数学归纳法证明时,要注意观察几个方面:(1)n的范围以及递推的起点(2)观察首末两项的次数(或其它),确定n=k时命题的形式(3)从和的差异,寻找由k到k+1递推中,左边要加(乘)上的式子
练习册系列答案
相关题目
已知n为正偶数,用数学归纳法证明1-
+
-
+…+
-
=2(
+
+…+
)时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n= 时等式成立.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
已知n为正偶数,用数学归纳法证明1-
+
-
+…+
=2(
+
+…+
)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
A、n=k+1时等式成立 |
B、n=k+2时等式成立 |
C、n=2k+2时等式成立 |
D、n=2(k+2)时等式成立 |