题目内容
已知n为正偶数,用数学归纳法证明1-
+
-
+…+
=2(
+
+…+
)时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=( )时等式成立.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
分析:直接利用数学归纳法的证明方法,判断选项即可.
解答:解:由数学归纳法的证明步骤可知,假设n=k(k≥2)为偶数)时命题为真,
则还需要用归纳假设再证n=k+2,
不是n=k+1,因为n是偶数,k+1是奇数,
故选B.
则还需要用归纳假设再证n=k+2,
不是n=k+1,因为n是偶数,k+1是奇数,
故选B.
点评:本题考查数学归纳法的证明方法的应用,基本知识的考查.
练习册系列答案
相关题目
已知n为正偶数,用数学归纳法证明1-
+
-
+…+
-
=2(
+
+…+
)时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n= 时等式成立.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
已知n为正偶数,用数学归纳法证明1-
+
-
+…+
=2(
+
+…+
)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
A、n=k+1时等式成立 |
B、n=k+2时等式成立 |
C、n=2k+2时等式成立 |
D、n=2(k+2)时等式成立 |