题目内容
(本小题满分12分)
已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是.
(Ⅰ)求函数的另一个极值点;
(Ⅱ)求函数的极大值和极小值,并求时的取值范围.
已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是.
(Ⅰ)求函数的另一个极值点;
(Ⅱ)求函数的极大值和极小值,并求时的取值范围.
(Ⅰ)
(Ⅱ);;的取值范围为
(Ⅱ);;的取值范围为
(Ⅰ),由题意知,
即得,(*),.
由得,
由韦达定理知另一个极值点为(或).
(Ⅱ)由(*)式得,即.
当时,;当时,.
(i)当时,在和内是减函数,在内是增函数.
,
,
由及,解得.
(ii)当时,在和内是增函数,在内是减函数.
,
恒成立.
综上可知,所求的取值范围为.
即得,(*),.
由得,
由韦达定理知另一个极值点为(或).
(Ⅱ)由(*)式得,即.
当时,;当时,.
(i)当时,在和内是减函数,在内是增函数.
,
,
由及,解得.
(ii)当时,在和内是增函数,在内是减函数.
,
恒成立.
综上可知,所求的取值范围为.
练习册系列答案
相关题目