题目内容

【题目】如图所示,已知AB为圆O的直径,C,D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

(1)求证:AC是∠DAB的平分线;
(2)求证:OF∥AG.

【答案】
(1)解:∵CF=FG

∴∠CGF=∠FCG

∴AB圆O的直径

∴∠ACB=∠ADB=90°

∵CE⊥AB

∴∠CEA=90°

∵∠CBA=90°﹣∠CAB,∠ACE=90°﹣∠CAB

∴∠CBA=∠ACE

∵∠CGF=∠DGA,

∴∠DGA=∠ABC

∴∴∠CAB=∠DAC

∴C为劣弧BD的中点,

∴AC是∠DAB的平分线;


(2)解:∵∠GBC=90°﹣∠CGB,∠FCB=90°﹣∠GCF

∴∠GBC=∠FCB

∴CF=FB

同理可证:CF=GF

∴BF=FG,

∵OA=OB,

∴OF∥AG.


【解析】(1)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.(2)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网