题目内容
【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )
A.AC⊥平面ABB1A1
B.CC1与B1E是异面直线
C.A1C1∥B1E
D.AE⊥BB1
【答案】D
【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,
所以对于A,AC与AB夹角为60°,即两直线不垂直,所以. AC不可能垂直于平面ABB1A1;故A错误;
对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;
对于C,A1C1,B1E是异面直线;故C错误;
对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;
所以答案是:D.
【考点精析】关于本题考查的空间中直线与直线之间的位置关系和空间中直线与平面之间的位置关系,需要了解相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点;直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能得出正确答案.
练习册系列答案
相关题目