题目内容
已知数列{an}是等差数列,且a2=-1,a5=5.(1)求{an}的通项an.(2)求{an}前n项和Sn的最小值.
(1) an= 2n-5 (2)-4
解析
为了保障幼儿园儿童的人身安全,国家计划在甲、乙两省试行政府规范购置校车方案,计划若干时间内(以月为单位)在两省共新购1000辆校车.其中甲省采取的新购方案是:本月新购校车10辆,以后每月的新购量比上一月增加50%;乙省采取的新购方案是:本月新购校车40辆,计划以后每月比上一月多新购m辆.(1)求经过n个月,两省新购校车的总数S(n);(2)若两省计划在3个月内完成新购目标,求m的最小值.
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}满足++…+=1-,n∈N* ,求{bn}的前n项和Tn.
已知各项都不相等的等差数列{an}的前6项和为60,且a6为a1和a21的等比中项.(1)求数列{an}的通项公式.(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{}的前n项和Tn.
在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an.(1)求数列{an}的通项公式,写出它的前n项和Sn.(2)求数列{bn}的通项公式.(3)若cn=,求数列{cn}的前n项和Tn.
等差数列{an}中,a3=3,a1+a4=5.(1)求数列{an}的通项公式;(2)若bn=,求数列{bn}的前n项和Sn.
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).(1)求an并证明数列{bn-1}是等比数列;(2)若数列{cn}满足cn=,证明:c1+c2+c3+…+cn<3.
已知等差数列满足:. (Ⅰ)求的通项公式及前项和;(Ⅱ)若等比数列的前项和为,且,求.