题目内容
已知数列an的相邻两项an,an+1满足an+an+1=2n,且a1=1
(1)求证an-
×2n是等比数列
(2)求数列{an}的通项公式an及前n项和Sn.
(1)求证an-
1 | 3 |
(2)求数列{an}的通项公式an及前n项和Sn.
分析:(1)由an+an+1=2n,得an+1-
×2n+1=-(an-
×2n),由此能证明数列{an-
×2n}是等比数列.
(2)由an-
×2n=
×(-1)n-1,知Sn=
{(2+22+23+…+2n)-[-(-1)+(-1)2+…+(-1)n]},由此能求出数列{an}的通项公式an及前n项和Sn.
1 |
3 |
1 |
3 |
1 |
3 |
(2)由an-
1 |
3 |
1 |
3 |
1 |
3 |
解答:解:(1)由an+an+1=2n,
得an+1-
×2n+1=-(an-
×2n),
故数列{an-
×2n}是首项为a1-
=
,公比为-1的等比数列.
(2)由(1)知an-
×2n=
×(-1)n-1,
即an=
[2n-(-1)n],
Sn=a1+a2+a3+…+an
=
{(2+22+23+…+2n)-[-(-1)+(-1)2+…+(-1)n]}
=
(2n+1-2-
)
=
•2n+1-
(-1)n-
.
得an+1-
1 |
3 |
1 |
3 |
故数列{an-
1 |
3 |
2 |
3 |
1 |
3 |
(2)由(1)知an-
1 |
3 |
1 |
3 |
即an=
1 |
3 |
Sn=a1+a2+a3+…+an
=
1 |
3 |
=
1 |
3 |
(-1)n-1 |
2 |
=
1 |
3 |
1 |
6 |
1 |
2 |
点评:本题考查等比数列的证明,考查数列的通项公式和数列的前n项和的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目