题目内容
(2013•深圳一模)如图,在圆O中,直径AB与弦CD垂直,垂足为E(E在A,O之间),EF⊥BC,垂足为F.若,则AB=6,CF•CB=5,则AE=
1
1
.分析:在Rt△BEC中,由射影定理可得EC2=CF•CB,由垂径定理可得CE=ED,再利用相交弦定理即可求出AE.
解答:解:在Rt△BCE中,EC2=CF•CB=5,∴EC2=5.
∵AB⊥CD,∴CE=ED.
由相交弦定理可得AE•EB=CE•EB=CE2=5.
∴(3-OE)•(3+OE)=5,解得OE=2,∴AE=3-OE=1.
故答案为1.
∵AB⊥CD,∴CE=ED.
由相交弦定理可得AE•EB=CE•EB=CE2=5.
∴(3-OE)•(3+OE)=5,解得OE=2,∴AE=3-OE=1.
故答案为1.
点评:熟练掌握射影定理、垂径定理、相交弦定理是解题的关键.
练习册系列答案
相关题目