题目内容

已知A、B、C是直线l上的三点,向量,,满足:

-[y+2f /(1)]+ln(x+1)=.

(Ⅰ)求函数y=f(x)的表达式;

(Ⅱ)若x>0,证明:f(x)>;

(Ⅲ)若不等式x2≤f(x2)+m2-2bm-3时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.

 

【答案】

(Ⅰ)f(x)=ln(x+1)

(Ⅱ)证明略

(Ⅲ)m≥3或m≤-3

【解析】 (Ⅰ)∵-[y+2f /(1)]+ln(x+1)=0,∴=[y+2f /(1)]-ln(x+1)

由于A、B、C三点共线 即[y+2f /(1)]+[-ln(x+1)]=1…………………2分

∴y=f(x)=ln(x+1)+1-2f /(1)

f /(x)=,得f /(1)=,故f(x)=ln(x+1)………5分

(Ⅱ)令g(x)=f(x)-,由g/(x)=-=

∵x>0,∴g/(x)>0,∴g(x)在(0,+∞)上是增函数………………7分

故g(x)>g(0)=0    即f(x)>…………………………………9分

(Ⅲ)原不等式等价于x2-f(x2)≤m2-2bm-3

令h(x)=x2-f(x2)=x2-ln(1+x2),由h/(x)=x-=………11分

当x∈[-1,1]时,h(x)max=0,∴m2-2bm-3≥0

令Q(b)=m2-2bm-3,则

得m≥3或m≤-3……………13分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网