题目内容
(本小题满分13分)设
是定义在
上的函数,对任意实数
、
,都有
,且当
<0时,
>1.
(1)证明:①
;
②当
>0时,0<
<1;
③
是
上的减函数;
(2)设
,试解关于
的不等式
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826818213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826833204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826865192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826880696.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
(1)证明:①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827208322.gif)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826818213.gif)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827317261.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827426803.gif)
(1)略
(2)当2<
,即
>
时,不等式的解集为
≤
≤![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
;
当2=
,即
=
时,
≤0,不等式的解集为
;
当2>
,即
<
时,不等式的解集为
≤
≤2
.
(2)当2<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827457192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827473217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827489266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827629191.gif)
当2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827457192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827473217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827723401.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827738246.gif)
当2>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827457192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827473217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827988430.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316082803593.gif)
解:(I)证明:(1)在
中,令![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828081404.gif)
得
即
∴
或
,
若
,则当
<0时,有
,与题设矛盾,
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828237324.gif)
(2)当
>0时,
<0,由已知得
>1,
又
,
,
∴ 0<
=
<1, 即
>0时,0<
<1.
(3)任取
<
,则
,
∵
<0,∴
>1,又由(1)(2)及已知条件知
>0,
∴
>
,∴
在定义域
上为减函数.
(II)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828627679.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828643753.gif)
又
,
在
上单调递减.
∴原不等式等价于
≤0
不等式可化为
≤0
当2<
,即
>
时,不等式的解集为
≤
≤![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
;
当2=
,即
=
时,
≤0,不等式的解集为
;
当2>
,即
<
时,不等式的解集为
≤
≤2
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828066697.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828081404.gif)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828097566.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828128528.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828144328.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828159325.gif)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828144328.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828222815.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828237324.gif)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828284197.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828300281.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828315856.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828331366.gif)
∴ 0<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828378430.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
(3)任取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828425203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828440206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828471903.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828471244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828487330.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828503295.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828518289.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828503295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828565420.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828581204.gif)
(II)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828612767.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828627679.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828643753.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828159325.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826724279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828581204.gif)
∴原不等式等价于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828705653.gif)
不等式可化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160828721593.gif)
当2<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827457192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827473217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827489266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827629191.gif)
当2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827457192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827473217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827723401.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827738246.gif)
当2>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827442246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827457192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827473217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827988430.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160826974187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160827629191.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目