题目内容

若α,β∈R,且α≠kπ+
π
2
(k∈Z),β≠kπ+
π
2
(k∈Z),则“α+β=
π
4
”是“(tanα+1)(tanβ+1)=2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据两角和的正切公式,利用充分条件和必要条件的定义进行判断.
解答:解若α+β=
π
4
,则tan(α+β)═
tanα+tanβ
1-tanαtanβ
=1
整理得“(tanα+1)(tanβ+1)=2,即充分性成立.
若(tanα+1)(tanβ+1)=2,则1+tanα+tanβ+tanαtanβ=2,
即tanα+tanβ=1-tanαtanβ,
当α≠kπ+
π
2
(k∈Z),β≠kπ+
π
2
(k∈Z),
tan(α+β)═
tanα+tanβ
1-tanαtanβ
=1

则α+β=
π
4
+kπ,(k∈Z),即必要性不成立.
故“α+β=
π
4
”是“(tanα+1)(tanβ+1)=2”的充分不必要条件,
故选:A.
点评:本题主要考查充分条件和必要条件的判断,根据两角和的正切公式是解决本题的关键,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网