题目内容
在△ABC中,AB边上的中线CO=4,若动点P满足
=sin2
+cos2
(θ∈R),则(
+
)•
的最小值是
PA |
θ |
2 |
OA |
θ |
2 |
CA |
PA |
PB |
PC |
-8
-8
.分析:令λ=sin2
,0≤λ≤1,可得
=
+(λ-1)
,再由
=
-
可得-
=(λ-1)
.故要求的式子可化为 2λ(λ-1)•16,再利用二次函数的性质求得它的最小值.
θ |
2 |
PA |
OA |
OC |
PA |
OA |
OP |
OP |
OC |
解答:解:令λ=sin2
,0≤λ≤1,则1-λ=cos2
,
∴
=λ
+(1-λ)
=
+(λ-1)
.
再由
=
-
可得-
=(λ-1)
.
故 (
+
)•
=(
+
-2
)•(
-
)=(
+
+(2λ-2)
)•λ
=2
•
+2
•
+2(λ-1)λ
2=2λ(λ-1)•16,
故当λ=
时,2λ(λ-1)8 取得最小值为-8,
故答案为-8.
θ |
2 |
θ |
2 |
∴
PA |
OA |
CA |
OA |
OC |
再由
PA |
OA |
OP |
OP |
OC |
故 (
PA |
PB |
PC |
OA |
OB |
OP |
OC |
OP |
OA |
OB |
OC |
OC |
=2
OA |
OC |
OB |
OC |
OC |
故当λ=
1 |
2 |
故答案为-8.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,二次函数的性质应用,属于中档题.
练习册系列答案
相关题目
如图,在△ABC中,AB=BC=4,∠ABC=30°,AD是边BC′上的高,则
•
的值等于( )
AD |
AC |
A、0 | B、4 | C、8 | D、-4 |