题目内容
已知函数f(x)=x2+ax-2b.若a,b都是区间[0,4]内的数,则使f(1)>0成立的概率是( )A.
B.
C.
D.
【答案】分析:本题利用几何概型求解即可.在a-o-b坐标系中,画出f(1)>0对应 的区域,和a、b都是在区间[0,4]内表示的区域,计算它们的比值即得.
解答:解:f(1)=1+a-2b>0,即a-2b+1>0,
则a,b都是从区间[0,4]任取的一个数,有f(1)>0,
即满足条件:
转化为几何概率如图所示,
其中A(0,),C(4,),
事件“f(1)>0”的表示的平面区域为阴影部分,
其面积为s=(OA+BC)×OB=(+)×4=6,
∴事件“f(1)>0”的概率为.
故选C.
点评:本小题主要考查几何概型、二次函数的性质等基础知识.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.
解答:解:f(1)=1+a-2b>0,即a-2b+1>0,
则a,b都是从区间[0,4]任取的一个数,有f(1)>0,
即满足条件:
转化为几何概率如图所示,
其中A(0,),C(4,),
事件“f(1)>0”的表示的平面区域为阴影部分,
其面积为s=(OA+BC)×OB=(+)×4=6,
∴事件“f(1)>0”的概率为.
故选C.
点评:本小题主要考查几何概型、二次函数的性质等基础知识.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|