题目内容
如图,在棱长为2的正方体ABCD-中,M为AB的中点,E为的中点,(说明:原图没有线段BC1,EO,AC1,请你自己在使用时将图修改一下)
(Ⅰ)求证:ME⊥BC1
(Ⅱ)求点M到平面DB1C的距离;
(Ⅲ)求二面角M-B1C-D的大小.
解:(Ⅰ)连接,依题意可得E为的中点,连接,设交于点O,
又∵M为AB的中点,∴∥.
在正方形BCC1B1中,⊥B1C
∴⊥B1C.
(Ⅱ)∵⊥B1C BC1⊥DC ∴ BC1⊥面DB1C,又∵∥,
⊥面DB1C , ∴为所求距离.
又正方体的棱长为2,∴,.
因此,点M到平面DB1C的距离为 。
(也可由体积相等,求得距离为)
(Ⅲ)连接EO,MO,则EO∥DC,而BC1⊥DC,∴EO⊥B1C,
由(Ⅱ)知ME⊥面DB1C,
∴EO为MO在平面DB1C内的射影,
由三垂线定理知MO⊥B1C,
所以∠MOE为二面角M- B1C-D的平面角.
在Rt△MEO中,EO=DC=1,ME=,
∴.
所以,二面角M- B1C-D的大小为.
练习册系列答案
相关题目