题目内容
设函数在,处取得极值,且.
(Ⅰ)若,求的值,并求的单调区间;
(Ⅱ)若,求的取值范围.
(Ⅰ)若,求的值,并求的单调区间;
(Ⅱ)若,求的取值范围.
解:.①····················································· 2分
(Ⅰ)当时,;
由题意知为方程的两根,所以.
由,得.········································································· 4分
从而,.
当时,;当时,.
故在单调递减,在,单调递增.····························· 6分
(Ⅱ)由①式及题意知为方程的两根,
所以.从而,
由上式及题设知.······································································· 8分
考虑,.………………………10分
故在单调递增,在单调递减,从而在的极大值为.
又在上只有一个极值,所以为在上的最大值,且最小值为.所以,即的取值范围
(Ⅰ)当时,;
由题意知为方程的两根,所以.
由,得.········································································· 4分
从而,.
当时,;当时,.
故在单调递减,在,单调递增.····························· 6分
(Ⅱ)由①式及题意知为方程的两根,
所以.从而,
由上式及题设知.······································································· 8分
考虑,.………………………10分
故在单调递增,在单调递减,从而在的极大值为.
又在上只有一个极值,所以为在上的最大值,且最小值为.所以,即的取值范围
略
练习册系列答案
相关题目