题目内容
19.命题p:“存在x0∈[1,+∞),使得(log23)x0≥1”,则命题p的否定是( )A. | 存在x0∈[1,+∞),使得(log23)x0<1 | B. | 存在x0∈[1,+∞),使得(log23)x0≥1 | ||
C. | 任意x∈[1,+∞),都有(log23)x<1 | D. | 任意x∈[1,+∞),都有(log23)x≥1 |
分析 根据特称命题的否定是全称命题,写出命题p的否定即可.
解答 解:∵命题p:“存在x0∈[1,+∞),使得(log23)x0≥1”,
∴命题p的否定是:“¬p:任意x0∈[1,+∞),都有(log23)x0<1”.
故选:C.
点评 本题考查了特称命题的否定是全称命题的应用问题,是基础题目.
练习册系列答案
相关题目
9.某中学共有1000名文科学生参加了该市高三第一次质量检查的考试,其中数学成绩如表所示:
(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,年级将采用分层抽样的方法抽取100名同学进行问卷调查.甲同学在本次测试中数学成绩为75分,求他被抽中的概率;
(Ⅱ)年级将本次数学成绩75分以下的学生当作“数学学困生”进行辅导,请根据所提供数据估计“数学学困生”的人数;
(Ⅲ)请根据所提供数据估计该学校文科学生本次考试的数学平均分.
数学成绩分组 | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] |
人数 | 60 | x | 400 | 360 | 100 |
(Ⅱ)年级将本次数学成绩75分以下的学生当作“数学学困生”进行辅导,请根据所提供数据估计“数学学困生”的人数;
(Ⅲ)请根据所提供数据估计该学校文科学生本次考试的数学平均分.
7.设不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x-y-6≤0}\\{x+3y-6≤0}\end{array}\right.$表示的平面区域为D,若函数y=logax(a>0且a≠1)的图象上存在区域D上的点,则实数a的取值范围是( )
A. | (0,$\frac{1}{2}$]∪[3,+∞) | B. | [$\frac{1}{2}$,1)∪[3,+∞) | C. | (0,$\frac{1}{2}$∪(1,3] | D. | [$\frac{1}{2}$,1)∪(1,3] |
4.设函数$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\{log_4}x,x>0\end{array}\right.$,若关于x的方程af2(x)-f(x)=0恰有三个不同的实数解,则实数a的取值范围为( )
A. | (0,1] | B. | [1,+∞) | C. | [0,1] | D. | (1,+∞) |
8.如图,动点A在函数$y=\frac{1}{x}(x<0)$的图象上,动点B在函数$y=\frac{2}{x}(x>0)$的图象上,过点A,B分别向x轴,y轴作垂线,垂足分别为A1,A2,B1,B2,若|A1B1|=4,则|A2B2|的最小值为( )
A. | $3+2\sqrt{2}$ | B. | $\frac{{3+2\sqrt{2}}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |