题目内容
(本小题满分12分)
如右图所示,已知直四棱柱的底面是菱形,且,,F为的中点,M为线段的中点。
(1)求证:直线MF平面ABCD
(2)求证:直线MF平面
(3)求平面与平面ABCD所成二面角的大小
(1)略(2)略(3) 或
解析:
解法一:(1)设AC与BD交于点O,因为点M、F分别为、的中点,所以,
又,――――――――3分
(2)因为底面为菱形且,所以四边形与全等,
又点F为中点,所以,在等腰△中,
因为,所以,可得,
所以(线面垂直判定定理)
――――――――――――――――――――7分
(3)延长,连接AQ,则AQ为平面与平面ABCD的交线.
所以FB为△的中位线, 则QB=BC,设底面菱形边长为a,可得AB=QB=a,
又 所以 那么△ABQ为等边三角形.
取AQ中点N,连接BN、FN,则为所求二面角的平面角或其补角.
在△FNB中, ――――――11分
即所求平面与平面ABCD所成二面角的平面角为或―――――――12分
(说明:答对一个即给满分)
解法二:设,因为M、O分别为的中点,∴MO∥
又由直四棱柱知,∴
在棱形ABCD中,,∴OB、OC、OM两两垂直,故可以O为原点,OB、OC、OM所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示。―――――――――2分
若设,则B,,,,
(1)由F、M分别为中点可知,M(0,0,1)
∴(1,0,0)=,又因为和不共线,∴∥OB
又因为,OB平面ABCD,∴MF∥平面ABCD――――――――5分
(2),而(1,0,0)为平面yOz(亦即平面)的法向量
∴直线MF⊥平面――――――――――――――――――――――――8分
(3)为平面ABCD的法向量,
设为平面的一个法向量,则,
由,,得:
令y=1,得z=,此时
设平面与平面ABCD所成二面角的大小为,
则
所以或,即平面与平面ABCD所成二面角的大小为或――12分
(说明:答对一个即给满分)