题目内容
如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求:
(1)设f(x)为绳子最短长度的平方,求f(x)表达式;
(2)绳子最短时,顶点到绳子的最短距离;
(3)f(x)的最大值.
【答案】
(1)f(x)=AM2=x2+16(0≤x≤4)(2)(3)32
【解析】
试题分析:将圆锥的侧面沿SA展开在平面上,如图,则该展开图为扇形,且弧AA′的长度L就是⊙O的周长,
∴L=2πr=2π.∴∠ASA′=×360°=×360°=90°,
(1)由题意知,绳长的最小值为展开图中的AM,其值为AM= (0≤x≤4),
∴f(x)=AM2=x2+16(0≤x≤4).
(2)绳子最短时,在展开图中作SR⊥AM,垂足为R,则SR的长度为顶点S到绳子的最短距离.在△SAM中,∵S△SAM=SA·SM=AM· SR,
∴SR== (0≤x≤4).
(3)∵f(x)=x2+16(0≤x≤4)是增函数,∴f(x)的最大值为f(4)=32.
考点:本小题主要考查扇形的弧长、面积公式等的应用,考查学生的运算求解能力.
点评:解决此类问题的关键是正确转化,将所要求解的问题转化为熟悉的数学问题进行解决.
练习册系列答案
相关题目