题目内容
(本题满分19分)已知函数,,定义,偶函数的定义域为,当时,。
(1)求;
(2)若存在实数使得该函数在上的最大值为,最小值为,求非零实数的取值范围。
(本题满分12分)为了了解某年段1000名学生的百米成绩情况,随机抽取了若
干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组
[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如
图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
(本题满分12分)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(19) (本题满分l4分)如图,一个小球从M处投入,通过管道自
上而下落A或B或C。已知小球从每个叉口落入左右两个
管道的可能性是相等的.
某商家按上述投球方式进行促销活动,若投入的小球落
到A,B,C,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.
(本题满分14分)
已知函数y=sin(2x)-8(sin x+cos x)+19(0≤x≤π),求函数y的最大值与最小值.