ÌâÄ¿ÄÚÈÝ

ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÖÐÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËû¿Õ¸ñ£®
µÚ1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡­ µÚnÁÐ
µÚ1ÐÐ 1 1 1 ¡­ 1
µÚ2ÐÐ q
µÚ3ÐÐ q2
¡­ ¡­
µÚnÐÐ qn-1
£¨1£©°´ÕÕÌîд¹æÔò£¬ÇëÔÚÉÏÊö±í¸ñÄÚÌîдµÚ¶þÐеĿոñÒÔ¼°µÚ¶þÁеĿոñ£»
£¨2£©ÊÔÓÃn¡¢q±íʾµÚ¶þÁеĸ÷ÊýÖ®ºÍ£»
£¨3£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡­£¬cn£¬Èôc1£¬c2£¬c3³ÉµÈ±ÈÊýÁУ¬ÊÔÇóqµÄÖµ£»ÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÊýÁÐc1£¬c2£¬c3£¬¡­£¬cnµÄÇ°mÏîc1£¬c2£¬c3£¬¡­£¬cm£¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
£¨1£©Èç±í¡­£¨3·Ö£©
µÚ1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡­ µÚnÁÐ
µÚ1ÐÐ 1 1 1 ¡­ 1
µÚ2ÐÐ q 1+q 2+q £¨n-1£©q
µÚ3ÐÐ q2 1+q+q2
¡­ ¡­
µÚnÐÐ qn-1 1+q+¡­qn-1
£¨2£©S=1+£¨1+q£©+£¨1+q+q2£©+¡­+£¨1+q+¡­+qn-1£©
µ±q=1ʱ£¬S=1+2+3+¡­+n=
n(n+1)
2
   
 µ±q¡Ù1ʱ£¬1+q+¡­+qn-1=
1-qn
1-q

S=
n-(q1+q2+¡­+qn)
1-q
=
n
1-q
-
qn-qn+1
(1-q)2

ËùÒÔ×ÛÉÏ¿ÉÖªSn=
n(n+1)
2
q=1
n
1-q
-
qn-qn+1
(1-q)2
q¡Ù1

£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2
ÓÉc22=c1c3?q=-
1
2
£¬Ôòc1=1£¬c2=
3
2
£¬c3=
9
4

Èôm¡Ý3ʱ£¬c1£¬c2£¬c3£¬¡­£¬cmΪµÈ±ÈÊýÁУ¬ÄÇôc1£¬c2£¬c3Ò»¶¨ÊǵȱÈÊýÁÐ
ÓÉÉÏ¿ÉÖª´Ëʱq=-
1
2
£¬ÓÖ c4=4+3q+2q2+q3µÃÖªc4=
23
8

¶ø
c4
c3
=
23
8
9
4
¡Ù
3
2
£¬ËùÒÔ¶ÔÓÚÈÎÒâµÄm¡Ý4£¬c1£¬c2£¬c3£¬¡­£¬cmÒ»¶¨²»ÊǵȱÈÊýÁÐ
×ÛÉÏËùÊö£¬µ±ÇÒ½öµ±m=3ÇÒq=-
1
2
ʱ£¬ÊýÁÐc1£¬c2£¬c3£¬¡­£¬cmÊǵȱÈÊýÁУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø