ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÖÐÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËû¿Õ¸ñ£®µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚnÁÐ | |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ | q | ||||
µÚ3ÐÐ | q2 | ||||
¡ | ¡ | ||||
µÚnÐÐ | qn-1 |
£¨2£©ÊÔÓÃn¡¢q±íʾµÚ¶þÁеĸ÷ÊýÖ®ºÍ£»
£¨3£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬Èôc1£¬c2£¬c3³ÉµÈ±ÈÊýÁУ¬ÊÔÇóqµÄÖµ£»ÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÊýÁÐc1£¬c2£¬c3£¬¡£¬cnµÄÇ°mÏîc1£¬c2£¬c3£¬¡£¬cm£¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°´Õչ涨µÄÒªÇó£¬ÒÀ´ÎÌîд¼´¿É£®
£¨2£©ÓÉ£¨1£©S=1+£¨1+q£©+£¨1+q+q2£©+¡+£¨1+q+¡+qn-1£©£¬¸÷ÏîÀûÓõȱÈÊýÁеÄÇ°nÏîºÍ¹«Ê½»¯¼ò£¬ÔÙÇóºÍ£®
£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2£¬c1£¬c2£¬c3³ÉµÈ±ÈÊýÁÐÇó³öq=-
£¬c4=4+3q+2q2+q3µÃÖªc4=
£¬¶ø
=
¡Ù
£¬ËùÒÔ¶ÔÓÚÈÎÒâµÄm¡Ý4£¬c1£¬c2£¬c3£¬¡£¬cmÒ»¶¨²»ÊǵȱÈÊýÁУ®
£¨2£©ÓÉ£¨1£©S=1+£¨1+q£©+£¨1+q+q2£©+¡+£¨1+q+¡+qn-1£©£¬¸÷ÏîÀûÓõȱÈÊýÁеÄÇ°nÏîºÍ¹«Ê½»¯¼ò£¬ÔÙÇóºÍ£®
£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2£¬c1£¬c2£¬c3³ÉµÈ±ÈÊýÁÐÇó³öq=-
1 |
2 |
23 |
8 |
c4 |
c3 |
| ||
|
3 |
2 |
½â´ð£º½â£º£¨1£©Èç±í¡£¨3·Ö£©
£¨2£©S=1+£¨1+q£©+£¨1+q+q2£©+¡+£¨1+q+¡+qn-1£©
µ±q=1ʱ£¬S=1+2+3+¡+n=
µ±q¡Ù1ʱ£¬1+q+¡+qn-1=
S=
=
-
ËùÒÔ×ÛÉÏ¿ÉÖªSn=
£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2
ÓÉc22=c1c3⇒q=-
£¬Ôòc1=1£¬c2=
£¬c3=
Èôm¡Ý3ʱ£¬c1£¬c2£¬c3£¬¡£¬cmΪµÈ±ÈÊýÁУ¬ÄÇôc1£¬c2£¬c3Ò»¶¨ÊǵȱÈÊýÁÐ
ÓÉÉÏ¿ÉÖª´Ëʱq=-
£¬ÓÖ c4=4+3q+2q2+q3µÃÖªc4=
¶ø
=
¡Ù
£¬ËùÒÔ¶ÔÓÚÈÎÒâµÄm¡Ý4£¬c1£¬c2£¬c3£¬¡£¬cmÒ»¶¨²»ÊǵȱÈÊýÁÐ
×ÛÉÏËùÊö£¬µ±ÇÒ½öµ±m=3ÇÒq=-
ʱ£¬ÊýÁÐc1£¬c2£¬c3£¬¡£¬cmÊǵȱÈÊýÁУ®
µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚnÁÐ | |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ | q | 1+q | 2+q | £¨n-1£©q | |
µÚ3ÐÐ | q2 | 1+q+q2 | |||
¡ | ¡ | ||||
µÚnÐÐ | qn-1 | 1+q+¡qn-1 |
µ±q=1ʱ£¬S=1+2+3+¡+n=
n(n+1) |
2 |
µ±q¡Ù1ʱ£¬1+q+¡+qn-1=
1-qn |
1-q |
S=
n-(q1+q2+¡+qn) |
1-q |
n |
1-q |
qn-qn+1 |
(1-q)2 |
ËùÒÔ×ÛÉÏ¿ÉÖªSn=
|
£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2
ÓÉc22=c1c3⇒q=-
1 |
2 |
3 |
2 |
9 |
4 |
Èôm¡Ý3ʱ£¬c1£¬c2£¬c3£¬¡£¬cmΪµÈ±ÈÊýÁУ¬ÄÇôc1£¬c2£¬c3Ò»¶¨ÊǵȱÈÊýÁÐ
ÓÉÉÏ¿ÉÖª´Ëʱq=-
1 |
2 |
23 |
8 |
¶ø
c4 |
c3 |
| ||
|
3 |
2 |
×ÛÉÏËùÊö£¬µ±ÇÒ½öµ±m=3ÇÒq=-
1 |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁеĶ¨Òå¡¢Åжϡ¢ÊýÁÐÇóºÍ£®¿¼²éÔĶÁ¡¢¼ÆËã¡¢·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
21.ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪµÄÊýÁÐÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ.
| µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚÁÐ |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ |
|
|
|
| |
µÚ3ÐÐ |
|
|
|
| |
¡ | ¡ |
|
|
|
|
µÚÐÐ |
|
|
|
|
(1) ÉèµÚ2ÐеÄÊýÒÀ´ÎΪ£¬ÊÔÓñíʾµÄÖµ£»
(2) ÉèµÚ3ÁеÄÊýÒÀ´ÎΪ£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊý£¬£»
(3) ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ (Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©.
¢Ù ÄÜ·ñÕÒµ½µÄÖµ£¬Ê¹µÃ(2) ÖеÄÊýÁеÄÇ°Ïî () ³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ.
¢Ú ÄÜ·ñÕÒµ½µÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ.
ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ£®
£¨1£©ÉèµÚ2ÐеÄÊýÒÀ´ÎΪB1£¬B2£¬¡£¬Bn£¬ÊÔÓÃn£¬q±íʾB1+B2+¡+BnµÄÖµ£»
£¨2£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬c1+c3£¾2c2£»
£¨3£©ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ £¨Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©£®
¢ÙÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃ£¨2£©ÖеÄÊýÁÐc1£¬c2£¬c3£¬¡£¬cnµÄÇ°mÏîc1£¬c2£¬¡£¬cm £¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
¢ÚÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®
µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚnÁÐ | |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ | q | ||||
µÚ3ÐÐ | q2 | ||||
¡ | ¡ | ||||
µÚnÐÐ | qn-1 |
£¨2£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬c1+c3£¾2c2£»
£¨3£©ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ £¨Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©£®
¢ÙÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃ£¨2£©ÖеÄÊýÁÐc1£¬c2£¬c3£¬¡£¬cnµÄÇ°mÏîc1£¬c2£¬¡£¬cm £¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
¢ÚÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®