题目内容
【题目】设点,动点满足,的轨迹为曲线.
(1)求曲线的方程;
(2)过定点作直线交曲线于两点.设为坐标原点,若直线与轴垂直,求面积的最大值;
(3)设,在轴上,是否存在一点,使直线和的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
【答案】(1);(2)1;(3)存在,存在点,常数为
【解析】
(1)根据椭圆定义判断并根据对应量的含义求标准方程;
(2)设直线方程,与椭圆方程联立解得交点坐标,表示出三角形面积,最后根据基本不等式求最值;
(3)先用坐标化简直线和的斜率的乘积,再设直线方程,并与椭圆方程联立,利用韦达定理化简两斜率的乘积式,最后根据恒成立解得点的坐标和斜率的乘积常数值.
(1)依题意可得:曲线为椭圆,
其中心在原点,长轴的长,半焦距,
故,
因此,曲线的方程为.
(2)不妨设直线与椭圆的交点为,
由得
则,
当且仅当即,亦即时取等号,
综上可得,面积的最大值为1.
(3)设直线与椭圆的交点为.
依题意,可设直线,
由消去并整理得,
则,(※)
且,……①
又,……②
若存在定点符合题意,且(为非零常数),
则,
把①②式代入此式并整理得:
(这里为常数,且为非零常数).
要使得上式对变量恒成立,只须(注意到),
解得或.
即当定点是椭圆的右顶点时,非零常数;
当定点是椭圆的左顶点时,非零常数.
综上,在轴上,存在点,
使直线和的斜率的乘积为非零常数,或存在点,
使直线和的斜率的乘积为非零常数.
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,,其中、为样本均值.
【题目】某市一农产品近六年的产量统计如下表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
年产量(千吨) | 5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 |
观察表中数据看出,可用线性回归模型拟合与的关系.
(1)根据表中数据,将以下表格空白部分的数据填写完整,并建立关于的线性回归方程;
总和 | 均值 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | |||
5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 | |||
1 | 4 | 9 | 16 | 25 | 36 | |||
5.1 | 10.6 | 16.8 | 22 | 30 | 36.6 | 121.1 |
(2)若在2025年之前该农产品每千克的价格(单位:元)与年产量满足的关系式为,且每年该农产品都能全部销售.预测在2013~2025年之间,某市该农产品的销售额在哪一年达到最大.
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.
【题目】2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.
某读书APP抽样调查了非一线城市M和一线城市N各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.
(1)请填写以下列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?
活跃用户 | 不活跃用户 | 合计 | |
城市M | |||
城市N | |||
合计 |
(2)以频率估计概率,从城市M中任选2名用户,从城市N中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.
(3)该读书APP还统计了2018年4个季度的用户使用时长y(单位:百万小时),发现y与季度()线性相关,得到回归直线为,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度()该读书APP用户使用时长约为多少百万小时.
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |