题目内容
设椭圆T:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_ST/2.png)
(1)求椭圆T的方程;
(2)直线l绕着F1旋转,与圆O:x2+y2=5交于A、B两点,若|AB|∈(4,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_ST/3.png)
【答案】分析:(1)由题意可将x=-c代入椭圆方程可得,
结合c=
可得y=
,从而可求|PQ|,再由△F1MF2面积的最大值为
可得
=
,由方程可求a,b进而可求椭圆方程
(2)设直线L:x=my-1,可求圆心O到直线L的距离d,由圆的性质可知AB=2
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/7.png)
由
,可求m的范围,联立方程组
消去x,设P(x1,y1),Q(x2,y2),则根据方程的根与系数关系可得,
,代入
=
,代入整理,结合函数的单调性可求S的范围
解答:解:(1)由题意可将x=-c代入椭圆方程可得,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/13.png)
∵c=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/14.png)
∴
即y=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/16.png)
∴|PQ|=
①
由已知可得
=
②
①②联立可得a2=3,b2=2
∴椭圆的方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/20.png)
(2)设直线L:x=my-1即x-my+1=0,圆心O到直线L的距离d=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/21.png)
由圆的性质可知AB=2
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/23.png)
又
,则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/25.png)
∴m2≤3
联立方程组
消去x可得(2m2+3)y2-4my-4=0
设P(x1,y1),Q(x2,y2),则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/27.png)
=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/30.png)
=
=
(令t=m2+1∈[1,4])
设f(t)=
(t∈[1,4])
则
对一切t∈[1,4]恒成立
∴f(t)=4t+
在[1,4]上单调递增,4t+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/37.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/38.png)
点评:本题主要考查了由椭圆的性质求解椭圆方程,点到直线的距离公式,圆的性质的应用,直线与圆锥曲线的相交关系的应用,还要具备一定的逻辑推理与运算的能力.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/5.png)
(2)设直线L:x=my-1,可求圆心O到直线L的距离d,由圆的性质可知AB=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/7.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/12.png)
解答:解:(1)由题意可将x=-c代入椭圆方程可得,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/13.png)
∵c=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/14.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/16.png)
∴|PQ|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/17.png)
由已知可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/19.png)
①②联立可得a2=3,b2=2
∴椭圆的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/20.png)
(2)设直线L:x=my-1即x-my+1=0,圆心O到直线L的距离d=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/21.png)
由圆的性质可知AB=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/23.png)
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/25.png)
∴m2≤3
联立方程组
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/26.png)
设P(x1,y1),Q(x2,y2),则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/30.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/32.png)
设f(t)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/33.png)
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/34.png)
∴f(t)=4t+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/37.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125125640528623/SYS201310251251256405286020_DA/38.png)
点评:本题主要考查了由椭圆的性质求解椭圆方程,点到直线的距离公式,圆的性质的应用,直线与圆锥曲线的相交关系的应用,还要具备一定的逻辑推理与运算的能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目