题目内容

【题目】已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a= , 求△ABC的面积.

【答案】解:(I)∵sin2B=2sinAsinC,
由正弦定理可得:>0,
代入可得(bk)2=2akck,
∴b2=2ac,
∵a=b,∴a=2c,
由余弦定理可得:cosB===
(II)由(I)可得:b2=2ac,
∵B=90°,且a=
∴a2+c2=2ac,解得a=c=
∴S△ABC=ac=1.
【解析】(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.
(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网