题目内容
【题目】在平面直角坐标系中,已知椭圆:的离心率为,且过点.
(1)求椭圆的方程;
(2)设点,点在轴上,过点的直线交椭圆交于,两点.
①若直线的斜率为,且,求点的坐标;
②设直线,,的斜率分别为,,,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由.
【答案】(1) (2)① ②存在,;
【解析】
(1)根据椭圆离心率及过点,建立方程组,求解即可(2)①设直线的方程为:,联立椭圆方程,利用弦长公式即可求出m,得到点的坐标②直线分斜率为0与不为0两种情况讨论,斜率为0时易得存在,斜率不为0时,联立直线与椭圆方程,利用恒成立,可化简知存在定点.
(1)∵椭圆:的离心率为,且过点.
∴,,
∴椭圆的方程为:.
(2)设,,
①设直线的方程为:.
.
.
,.
,解得.
∴.
②当直线的斜率为0时,,,.
由可得,解得,即.
当直线的斜率不为0时,设直线的方程为.
由.
,.
由可得,
,
.
.
,
∴当时,上式恒成立,
存在定点,使得恒成立.
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程;
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.