题目内容

设f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值.
(2)设g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:1n+3n+…+(2n-1)n
e
e-1
•(2n)n
分析:(1)f(x)≥0对一切x∈R恒成立,等价于f(x)min≥0,利用导数可得最小值;
(2)设x1,x2是任意的两实数,且x1g(x1)-mx1,令函数F(x)=g(x)-mx,则F(x)在(-∞,+∞)上单调递增,
F′(x)=g′(x)-m≥0恒成立,分离出参数m后转化为求函数最值即可;
(3)由(1)知ex≥x+1,取x=-
i
2n
,i=1,3,…,2n-1,得1-
i
2n
e
i
2n
,即(
2n-i
2n
)ne-
i
2
,累加后再进行适当放缩,可证明;
解答:解:(1)∵f(x)=ex-a(x+1),∴f′(x)=ex-a,
∵a>0,f′(x)=ex-a=0的解为x=lna,
∴f(x)min=f(lna)=a-a(lna+1)=-alna,
∵f(x)≥0对一切x∈R恒成立,
∴-alna≥0,∴lna≤0,∴0<a≤1,即amax=1.
(2)设x1,x2是任意的两实数,且x1<x2
g(x2)-g(x1)
x2-x1
>m,故g(x2)-mx2>g(x1)-mx1
∴不妨令函数F(x)=g(x)-mx,则F(x)在(-∞,+∞)上单调递增,
∴F′(x)=g′(x)-m≥0恒成立,
∴对任意的a≤-1,x∈R,m≤g′(x)恒成立,
g′(x)=ex-a-
a
ex
≥2
ex•(-
a
ex
)
-a=-a+2
-a
=(
-a
+1)2-1≥3

故m≤3;
(3)由(1)知ex≥x+1,取x=-
i
2n
,i=1,3,…,2n-1,得1-
i
2n
e
i
2n
,即(
2n-i
2n
)ne-
i
2

累加得:(
1
2n
)n+(
3
2n
)n+…+(
2n-1
2n
)n
e-
2n-1
2
+e-
2n-3
2
+…+e-
1
2
=
e-
1
2
(1-e-n)
1-e-1
e
e-1

1n+3n+…+(2n-1)n
e
e-1
(2n)n

故存在正整数a=1.使得1n+3n+…+(2n-1)n
e
e-1
•(2n)n
点评:本题考查恒成立问题、导数求函数的最值,考查转化思想,考查学生分析问题解决问题的能力,该题综合性强,难度大,对能力要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网