题目内容

精英家教网如图,A,B是海面上位于东西方向相距5(3+
3
)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20
3
海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?
分析:先根据内角和求得∠DAB和,∠DBA及进而求得∠ADB,在△ADB中利用正弦定理求得DB的长,进而利用里程除以速度即可求得时间.
解答:精英家教网解:由题意知AB=5(3+
3
)海里,
∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,
∴∠ADB=180°-(45°+30°)=105°,
在△ADB中,有正弦定理得
DB
sin∠DAB
=
AB
sin∠ADB

∴DB=
AB•sin∠DAB
sin∠ADB
=
5(3+
3
)sin45°
sin105°
=10
3

又在△DBC中,∠DBC=60°
DC2=DB2+BC2-2×DB×BC×cos60°=900
∴DC=30
∴救援船到达D点需要的时间为
30
30
=1(小时)
答:该救援船到达D点需要1小时.
点评:本题主要考查了解三角形的实际应用.考查了学生运用所学知识解决实际问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网