题目内容
(本小题满分12分)
设函数f (x)=ln(x+a)+x2.
(Ⅰ)若当x=1时,f (x)取得极值,求a的值,并讨论f (x)的单调性;
(Ⅱ)若f (x)存在极值,求a的取值范围,并证明所有极值之和大于ln.
【答案】
(Ⅰ);分别在区间单调递增,在区间单调递减.
(Ⅱ),证明见解析
【解析】
(Ⅰ),依题意有,故.
从而.的定义域为,
当时,;当时,;
当时,.
分别在区间单调递增,在区间单调递减.
(Ⅱ)的定义域为,.
方程的判别式.
(ⅰ)若,即,在的定义域内,故无极值.
(ⅱ)若,则或.
若,,.
当时,,
当时,,所以无极值.
若,,,也无极值.
(ⅲ)若,即或,则有两个不同的实根,.
当时,,从而有的定义域内没有零点,故无极值.
当时,,,在的定义域内有两个不同的零点,由根值判别方法知在取得极值.
综上,存在极值时,的取值范围为.
的极值之和为
.
练习册系列答案
相关题目