题目内容
已知b>a>0,x>y>0,求证:>.
[解析] ∵x>y>0,∴0<<,
∵b>a>0,∴0<<,∴1<1+<1+,
即1<<,∴>.
(本小题满分14分)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在
第一象限的交点为G.已知抛物线在点G的切线经
过椭圆的右焦点.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在
抛物线上是否存在点P,使得△ABP为直角三角形?
若存在,请指出共有几个这样的点?并说明理由
(不必具体求出这些点的坐标).
已知函数,(a>0),若,,使得f(x1)= g(x2),则实数a的取值范围是( )
(A) (B) (C) (D)
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
(Ⅰ)当直线过右焦点时,求直线的方程;
已知f(x)=ax, g(x)=logax(a>0且a≠1),若f(3)g(3)<0,则f(x)与g(x)在同一坐标系内的图象可能是
A B C D