题目内容
已知函数f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_ST/0.png)
(1)求函数f(x)的最小正周期及解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_ST/1.png)
【答案】分析:(1)根据y=Asin(ωx+∅)的最小正周期的求法求得此函数的最小正周期.由函数的最大值求A,根据函数在x=
时取得最大值4,求得φ,从而得到函数的解析式.
(2)令2kπ-
≤3x+
≤2kπ+
,k∈z,求得x的范围,即可到函数f(x)的单调增区间.
(3)根据x∈
,结合正弦函数的定义域和值域,求得函数f(x)在
上的值域.
解答:解:(1)∵函数f(x)=Asin(3x+φ),故函数的最小正周期为T=
.
由函数的最大值为4可得A=4,
由函数在x=
时取得最大值4可得 4sin(3×
+φ)=4,故
+φ=2kπ+
,k∈z.
结合0<φ<π,可得 φ=
.
综上,函数f(x)=4sin(3x+
).
(2)令2kπ-
≤3x+
≤2kπ+
,k∈z,求得≤
-
≤x≤
+
,
故函数f(x)的单调增区间为[
-
,
+
],k∈z.
(3)∵x∈
,∴3x+
∈[
,
],∴sin(3x+
)∈[-
,1],
故4sin(3x+
)∈[-2
,4].
故函数f(x)在
上的值域为[-2
,4].
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,函数y=Asin(ωx+∅)的最小正周期、单调性、定义域和值域,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/0.png)
(2)令2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/3.png)
(3)根据x∈
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/5.png)
解答:解:(1)∵函数f(x)=Asin(3x+φ),故函数的最小正周期为T=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/6.png)
由函数的最大值为4可得A=4,
由函数在x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/10.png)
结合0<φ<π,可得 φ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/11.png)
综上,函数f(x)=4sin(3x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/12.png)
(2)令2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/19.png)
故函数f(x)的单调增区间为[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/23.png)
(3)∵x∈
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/29.png)
故4sin(3x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/31.png)
故函数f(x)在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103807121296142/SYS201311031038071212961018_DA/33.png)
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,函数y=Asin(ωx+∅)的最小正周期、单调性、定义域和值域,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目