题目内容
13.如图所示的一块长方体木料中,已知AB=BC=4,AA1=1,设E为底面ABCD的中心,且$\overrightarrow{AF}=λ\overrightarrow{AD}$(0≤λ≤$\frac{1}{2}$),则该长方体中经过点A1、E、F的截面面积的最小值为$\frac{12\sqrt{5}}{5}$.分析 首先找到经过点A1、E、F的截面为平行四边形,然后根据平行四边形面积公式结合二次函数知识求得截面的最小值.
解答 解:设截面为A1FMN,显然A1FMN为平行四边形,过A点作AG⊥MF与G,则MG⊥A1G,作MK⊥AD与K,
根据题意AF=4λ,则CM=DK=4λ,KF=4-8λ,MF=$\sqrt{{4}^{2}+(4-8λ)^{2}}$,
易知Rt△MKF∽Rt△AGF,∴$\frac{KM}{MF}=\frac{AG}{4λ}$,∴AG=$\frac{16λ}{MF}$,
∴A1G2=AG2+AA12=$\frac{(16λ)^{2}}{M{F}^{2}}$+1,
∴S截面2=MF2×A1G2=MF2×($\frac{(16λ)^{2}}{M{F}^{2}}$+1)=162λ2+42+(4-8λ)2
=32(10λ2-2λ+1)=320(λ-$\frac{1}{10}$)2+$\frac{144}{5}$(0≤λ≤$\frac{1}{2}$),
∴当λ=$\frac{1}{10}$时,S截面2=取得最小值$\frac{144}{5}$,此时S截面为$\frac{12\sqrt{5}}{5}$.
故答案为:$\frac{12\sqrt{5}}{5}$.
点评 本题考查了棱柱的结构特征.本题中的长方体是一直棱柱,所以棱AA1⊥平面ABCD,则AA1⊥AE.
练习册系列答案
相关题目
2.过双曲线$\frac{x^{2}}{a^{2}}$-$\frac{y^{2}}{b^{2}}$=1(a>0,b>0)上一点P做直线PA,PB交双曲线于A,B两点,且斜率分别为k1,k2,若直线AB过原点,k1•k2=2,则双曲线的离心率e等于( )
A. | $\sqrt{3}$ | B. | 3 | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3}{2}$ |