题目内容
(本小题满分12分)
已知函数
,曲线
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)过点
能作几条直线与曲线
相切?说明理由.
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346353773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346368606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346462523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346478535.png)
(1)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346493492.png)
(2)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346524489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346368606.png)
(1)
(2)三条切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346556604.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346571754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240043465871599.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346556604.png)
(2)设过点(2,2)的直线与曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346618559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346634514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346649805.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346665777.png)
由切线过点(2,2)得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346680715.png)
过点(2,2)可作曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346618559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346727601.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346743711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346758682.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346774507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346790548.png)
当t变化时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346805429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346836443.png)
t | ![]() | 0 | (0,2) | 2 | ![]() |
![]() | + | 0 | - | 0 | + |
![]() | ↗ | 极大值2 | ↘ | 极小值-2 | ↗ |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346930751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004346946494.png)
点评:导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,第二问求切线条数准化为求切点个数,进而化为求方程的根,此时可与函数最值结合,此题出的比较巧妙
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目