题目内容

【题目】有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点,若正方体的棱长为,求这三个球的表面积.

【答案】(1),(2),(3).

【解析】试题分析:(1))正方体的内切球球心是正方体的中心,切点是六个面(正方形)的中心,据此可求半径、面积;(2)球与正方体各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,对棱之间距离就是球直径;(3)正方体的各个顶点在球面上, 正方体的对角线就是球的直径.

试题解析:(1)正方体的内切球球心是正方体的中心,切点是六个面(正方形)的中心,经过四个切点及球心作截面,如图(1),所以有2r1=a,r1=,所以S1=4π=πa2.

(2)球与正方体各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,如图(2),所以有2r2=a,r2=a,所以S2=4π=2πa2.

(3)正方体的各个顶点在球面上,过球心作正方体的对角面得截面,如图(3),所以有2r3=a,r3=a,所以S3=4π=3πa2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网