题目内容
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若任意的a、b∈[-1,1],当a+b≠0时,总有.
(1)判断函数f(x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:;
(3)若f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常数),试用常数p表示实数m的取值范围.
解:(1)f(x)在[-1,1]上是增函数,
证明如下:任取x1、x2∈[-1,1],且x1<x2,则x1-x2<0,
于是有,
而x1-x2<0,故f(x1)<f(x2),故f(x)在[-1,1]上是增函数;(4分)
(2)由f(x)在[-1,1]上是增函数知:
,
故不等式的解集为;(8分)
(3)由(1)知f(x)最大值为f(1)=1,
所以要使f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,
只需1≤m2-2pm+1成立,即m(m-2p)≥0.
①当p∈[-1,0)时,m的取值范围为(-∞,2p]∪[0,+∞);
②当p∈(0,1]时,m的取值范围为(-∞,0]∪[2p,+∞);
③当p=0时,m的取值范围为R.(12分)
分析:(1)f(x)在[-1,1]上是增函数,然后利用增函数的定义进行证明.
(2)由f(x)在[-1,1]上是增函数可列出方程组,解这个方程组就到不等式的解.
(3)根据函数的单调性知f(x)最大值为f(1)=1,所以要使f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,只需m(m-2p)≥0成立.根据p的不同取值进行分类讨论,能够求出实数m的取值范围.
点评:本题考查函数的性质和应用,解题时要认真审题,仔细求解.
证明如下:任取x1、x2∈[-1,1],且x1<x2,则x1-x2<0,
于是有,
而x1-x2<0,故f(x1)<f(x2),故f(x)在[-1,1]上是增函数;(4分)
(2)由f(x)在[-1,1]上是增函数知:
,
故不等式的解集为;(8分)
(3)由(1)知f(x)最大值为f(1)=1,
所以要使f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,
只需1≤m2-2pm+1成立,即m(m-2p)≥0.
①当p∈[-1,0)时,m的取值范围为(-∞,2p]∪[0,+∞);
②当p∈(0,1]时,m的取值范围为(-∞,0]∪[2p,+∞);
③当p=0时,m的取值范围为R.(12分)
分析:(1)f(x)在[-1,1]上是增函数,然后利用增函数的定义进行证明.
(2)由f(x)在[-1,1]上是增函数可列出方程组,解这个方程组就到不等式的解.
(3)根据函数的单调性知f(x)最大值为f(1)=1,所以要使f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,只需m(m-2p)≥0成立.根据p的不同取值进行分类讨论,能够求出实数m的取值范围.
点评:本题考查函数的性质和应用,解题时要认真审题,仔细求解.
练习册系列答案
相关题目