题目内容
【题目】已知函数.
(Ⅰ) 求函数的单调区间;
(Ⅱ) 当时,求函数在上最小值.
【答案】(Ⅰ)见解析;(Ⅱ)当时,函数的最小值是;当时,函数的最小值是
【解析】
(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;
(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0<a<ln 2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.
函数的定义域为.
因为,令,可得;
当时,;当时,,
综上所述:可知函数的单调递增区间为,单调递减区间为
当,即时,函数在区间上是减函数,
的最小值是
当,即时,函数在区间上是增函数,
的最小值是
当,即时,函数在上是增函数,在上是减函数.
又,
当时,的最小值是;
当时,的最小值为
综上所述,结论为当时,函数的最小值是;
当时,函数的最小值是.
【题目】十三届全国人大二次会议于2019年3月5日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:
收看 | 没收看 | 合计 | |
男生 | 40 | ||
女生 | 30 | 60 | |
合计 |
(1)请完成列联表;
(2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001)
附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【题目】某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:
x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程的系数公式:
参考数据:2×18+3×27+4×32+5×35=420