题目内容

5.已知等差数列{an}的前6项和S6=48,a1=3.
(1)求通项公式an及其前n项的和Sn
(2)求数列{$\frac{1}{{S}_{n}}$}的前n项的和Tn

分析 (1)设等差数列{an}的公差为d,由等差数列的求和公式,计算可得d=2,即可得到所求通项公式;
(2)由$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),运用裂项相消求和方法,即可得到所求数列的求和.

解答 解:(1)设等差数列{an}的公差为d,
则6a1+$\frac{6×5}{2}$d=48,又a1=3.
即有d=2,
则有an=a1+(n-1)d=2n+1;
Sn=na1+$\frac{1}{2}$n(n-1)d=3n+n(n-1)=n2+2n;
(2)$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
即有Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

点评 本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网