题目内容
已知数列an=(n+1)×(
)n,求{an}的前n项和Sn.
9 | 10 |
分析:结合数列的特点,考虑应运用错位求和方法可求数列的和
解答:解:∵an=n+1为等差数列,bn=(
)n为等比数列
∵Sn=2×
+3×(
)2+…+(n+1)•(
)n
∴
Sn=2×(
)2+3×(
)3+…+(n+1)×(
)n
两式相减,
Sn=
+[(
)2+(
)3+…+(
)n]-(n+1)•(
)n+1
=
+
×[1- (
)n ]-(n+1)×(
)n+1
=
-(
)n+1(n+10)
∴Sn=99-9(n+10)×(
)n
9 |
10 |
∵Sn=2×
9 |
10 |
9 |
10 |
9 |
10 |
∴
9 |
10 |
9 |
10 |
9 |
10 |
9 |
10 |
两式相减,
1 |
10 |
9 |
5 |
9 |
10 |
9 |
10 |
9 |
10 |
9 |
10 |
=
9 |
5 |
81 |
10 |
9 |
10 |
9 |
10 |
=
99 |
10 |
9 |
10 |
∴Sn=99-9(n+10)×(
9 |
10 |
点评:本题主要考查了数列求和的错位相减,一般数列{anbn}且an,bn分别是等差数列与等比数列,求和时应用错位相减求和
练习册系列答案
相关题目