题目内容
【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
【答案】
(1)解:联立得: ,
解得: ,
∴圆心C(3,2).
若k不存在,不合题意;
若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即 =1,
解得:k=0或k=﹣ ,
则所求切线为y=3或y=﹣ x+3
(2)解:设点M(x,y),由MA=2MO,知: =2 ,
化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,C(a,2a﹣4),
∴圆C与圆D的关系为相交或相切,
∴1≤|CD|≤3,其中|CD|= ,
∴1≤ ≤3,
解得:0≤a≤
【解析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.
【题目】国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:
支持 | 不支持 | 合计 | |
中老年组 | 50 | ||
中青年组 | 50 | ||
合 计 | 100 |
(1)根据以上信息完成2×2列联表;
(2)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .