题目内容

(本小题满分12分)

如图,在四棱锥P-ABCD中,底面为正文形,PA平面ABCD,且PA=AD,E为棱PC上的一点,PD平面ABE

(I)求证:E为PC的中点

(II)若N为CD中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角C-EM—N的大小

 

 

【答案】

解:(Ⅰ)过,由

可知

四点共面,…………………2分

又因为

,

∴在中,,………………………4分

∴可得EPC的中点.……………………6分

(Ⅱ)连结

连结,则为直线MN与平面ABE所成的角.

中,

最小时,最大,此时

所以MAB中点,……………………………9分

可知

.……………12分

法二(Ⅰ)建立如图所示空间直角坐标系,不妨设,则.………………2分

,

,…………………4分

因为  ,

,.……………………6分

(Ⅱ)设,

由(Ⅰ)知面的法向量为

MN与面ABE所成角为,

t=时,最大,此时MAB中点,…………………9分

平面NEM的法向量为 设平面CEM的法向量为

   而

    令.

.……………………12分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网