题目内容
【题目】已知函数.
(1)若曲线的切线方程为,求实数的值;
(2)若函数在区间上有两个零点,求实数的取值范围.
【答案】(1);(2)或
【解析】
(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;
(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.
(1)依题意,,,
设切点为,,
故,
故,则;
令,,
故当时,,
当时,,
故当时,函数有最小值,
由于,故有唯一实数根0,
即,则;
(2)由,得.
所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;
由于.
由,解得,.
当变化时,与的变化情况如下表所示:
3 | |||||
0 | + | 0 | |||
极小值 | 极大值 |
所以在,上单调递减,在上单调递增.
又因为,,
,,
故当或时,直线与曲线在上有两个交点,
即当或时,函数在区间上有两个零点.
练习册系列答案
相关题目