题目内容
【题目】设a,b,c表示三条不同的直线,M表示平面,给出下列四个命题:其中正确命题的个数有( )
①若a//M,b//M,则a//b;
②若bM,a//b,则a//M;
③若a⊥c,b⊥c,则a//b;
④若a//c,b//c,则a//b.
A.0个B.1个C.2个D.3个
【答案】B
【解析】
由空间直线的位置关系及空间直线与平面的位置关系逐一判断即可得解.
解:对于①,若a//M,b//M,则a//b或与相交或与异面,即①错误;
对于②,若bM,a//b,则a//M或aM,即②错误;
对于③,若a⊥c,b⊥c,则a//b或与相交或与异面,即③错误;
对于④,若a//c,b//c,由空间直线平行的传递性可得a//b,即④正确,
即正确命题的个数有1个,
故选:B.
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.见附表:参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”
【题目】随着节能减排意识深入人心,共享单车在各大城市大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果用户每周使用共享单车超过3次,那么认为其“喜欢骑行共享单车”.请完成下面的2×2列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关;
不喜欢骑行共享单车 | 喜欢骑行共享单车 | 合计 | |
男 | |||
女 | |||
合计 |
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,将频率视为概率,在我市所有的“骑行达人”中随机抽取4名,求抽取的这4名“骑车达人”中,既有男性又有女性的概率.
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |